

# Carboline Radiant Heating and Cooling Ceiling Panels

Catalog



![](_page_1_Picture_0.jpeg)

Comfortable indoor ventilation

Clean air solutions

Always the best climate for

# IMPROVED QUALITY OF LIFE

With Zehnder, you will find the perfect climate for any space.

www.zehnder-systems.com

# Heating and cooling with Zehnder Carboline

Optimal indoor climate and efficient use of energy throughout the year. New regulations now dictate how energy efficient a building should be, as a saving in energy also reduces CO<sup>2</sup> emissions. While this helps create an ideal indoor climate in the winter months, it subsequently creates a new problem in the transitional seasons and in summer.

The fabric of these buildings is well insulated, therefore, the rooms within easily over-heat. The high external temperatures are boosted by the interior heat load: computers, copiers, printers and other technical equipment cause increased indoor temperatures, as do the people occupying the space. Because the excess heat can no longer be dissipated, the cooling load rises, especially in buildings with high-grade insulation. As part of the requirement for an ideal indoor climate, cool rooms in the summer will become equally important in the future.

Zehnder Carboline is an elegant and innovative response to the requirements placed on modern indoor climate control – in summer and in winter. This is because Zehnder Carboline allows rooms to be heated and cooled.

The main areas of application are:

- Offices
- Schools
- Hospitals
- Meeting rooms
- Operating rooms

Zehnder Carboline guarantees even heat distribution within a room and extremely high energy efficiency.

| General information       | 2  |
|---------------------------|----|
| Product benefits          | 4  |
| Features                  | 5  |
| Structure                 | 8  |
| Heat distribution         | 10 |
| Energy savings            | 11 |
| Cost benefits             | 12 |
| Suspension & installation | 14 |
| Technical data            | 17 |
| Dimensions                | 18 |
| Panel specifications      | 20 |
| Warranty                  | 23 |

# Principles and operation

How do modern ceiling-mounted heating and cooling systems work? To explain this, we first need to compare the various forms of heat transmission:

#### **Thermal conduction**

The heat is transmitted within a body through vibration. The particles are at rest with each other. **Example:** touching a hot object.

#### Convection

The heat is transmitted from a liquid or gas to a solid body, or vice versa. The particles are in motion with each other. **Example:** the hot air rising from a radiator.

#### Radiation

Each body radiates heat, depending on the nature of its surface and temperature. The heat is transmitted from one body to another by means of electromagnetic waves (light). **Example:** Sensing the heat radiated by the sun on a snow-covered mountain.

## Logistics

#### **Delivery and unloading**

Zehnder arranges the desired delivery date with the customer with ample time, so the customer can ensure that personnel and suitable unloading equipment are available. A forklift truck is the best means of unloading.

#### Protection during transport

An adhesive film protects each individual element on the visible side. Protected by this film, all modules are placed vertically next to each other on a wooden pallet.

![](_page_3_Picture_13.jpeg)

# Heating effect of our system

Radiant ceiling panels give off most of their heat through radiation. The remaining heat is transmitted via convection.

The radiation of heat is achieved by passing heated water through pipes. The entire system transfers this heat to the room.

The benefit of our system lies in the direct heating effect it has on the body, without the need to heat another medium (air).

How do people sense heat? The ability to sense heat is determined by exchanging the heat generated in the body with the environment. In cool rooms, too much heat is drawn from the body and the temperature of the room is perceived as being too low. This can be offset by raising the air temperature and through heat radiation.

In the case of radiant heating systems, the room is heated through a raised surface temperature with a simultaneously low air temperature. This allows valuable energy to be saved!

![](_page_4_Picture_6.jpeg)

## Cooling effect of our system

The cooling effect is based on the same physical principles as the heating effect. Only now, the heat is not radiated, but absorbed.

As the cold radiant ceiling panel exchanges radiation with the warmer surfaces, the warmer surfaces give off part of their heat to the panel. About 60% of this radiant heat is absorbed. The remaining 40% arises through convection as the warm indoor air rises due to the difference in density and flows along the ceiling, where it transmits its heat to the radiant ceiling panel. The cooled air flows – again based on the difference in density – back into the room.

In this case, the air temperature is perceived as being lower than it actually is. And yet again, it is also possible to save precious energy compared to pure air cooling systems.

![](_page_4_Picture_11.jpeg)

# Product benefits

Zehnder Carboline is based on the combination of design, optimal climate, perfect technology and economic efficiency. Here are the main benefits at a glance.

### Excellent technology and

#### performance

- Very high heating and cooling output, tested to DIN EN 14037 and DIN EN 14240
- Extremely quick reaction time of the system to temperature changes in the room, due to the low storage mass and good thermal conductivity of the modules
- Low heating flow temperatures enable the use of alternative energy sources (solar cells, calorific value technology, heat pump)
- The low subnormal temperature enables the use of alternative energy sources (ground water)
- Simple, quick and affordable installation

### **Economic efficiency**

- Cooling and heating with a single system: Zehnder Carboline
- High energy savings, thanks to the radiation principle
- Low investment and operating costs
- Long service life

### Feel-good climate

- Pleasant indoor climate, thanks to high radiation component and low convection: no drafts or dust dispersal
- Even, comfortable heat distribution
- Silent operation
- Perforated design for acoustic absorption

#### Design

- Elegant design
- Variable room use
- Floor and walls can be used flexibly

### Standard unit features

Zehnder Carboline comprises of a copper pipe which is embedded in an expanded graphite sandwich. This high-performance thermal element is bonded to a sheet steel cassette. The radiant panel has an angled profile on the side and top to create a selfsupporting panel.

- Brackets are added to the steel cassette to add hanging stability to the structure
- Steel panel has a powder coat finish
- Panel is connected to supply/return or other panels with flexible hoses.
   The hoses connect to the panel with a push-to-connect fitting.
- All panels are non-flammable and are safe for indoor use
- RAL 9010 matte

### **Operating Parameters**

- Max. working temperature: 185 °F
- Max. working pressure: 145 PSI

![](_page_6_Figure_11.jpeg)

T-bar style shown

### **Optional features**

#### **Perforated surface**

Zehnder Carboline is available with the option of either a smooth or perforated surface. Both types of surfaces are coated with a highquality, powder-baked enamel finish. A perforated surface has the additional benefit of sound absorption. The reverberation within a room can be decreased on average of 44%. (Results based on perforated panel with insulation in a free hanging configuration, tested to DIN EN ISO 354. Results will vary based on room configuration.)

#### **Ceiling cut-outs**

Ceiling cut-outs are integrated into the panel elements of Zehnder Carboline as required. Cut-outs typically accommodate air outlets, projector brackets, loudspeakers, fire alarms, lighting and similar items. Cut-outs cannot interfere with the copper tubing. Precise locations are confirmed by the factory.

#### Insulation

- 1" Fiberglass
- 1/2" Rockfon
- 1" Rockfon

#### Color

6 additional colors to choose from

![](_page_7_Picture_12.jpeg)

![](_page_7_Picture_13.jpeg)

![](_page_7_Picture_14.jpeg)

![](_page_7_Picture_15.jpeg)

#### Note:

The number of panels, size of panels, optional cut-outs and perforated surface can be indicated on panel selection.

# Special features

What distinguishes Zehnder Carboline from other ceiling-mounted heating and cooling systems? Expanded natural graphite: its properties are ideal for the ceiling-mounted cooling and heating elements.

Combined with Zehnder's expertise in the development and manufacture of panel-based heating and cooling systems, the result is a high performance system that can be easily and practically integrated into existing and new grid and suspended ceilings.

This makes Zehnder Carboline perfectly suited to providing climate control in offices, schools, hospitals, meeting rooms and operating rooms – in short, everywhere a comfortable and healthy indoor climate plays a decisive role.

### **Expanded natural graphite**

#### An innovative material with ideal properties

The material used for Zehnder Carboline is produced from scale shaped natural graphite with a defined crystalline structure. This is a naturally occurring material and an inorganic modification of carbon; the carbon atoms of the graphite are arranged in a hexagonal crystal lattice in flat, superimposed layers. The production process enlarges the volume of these parallel scales by 200 to 400 times. This expanded natural graphite is then processed further into lightweight panels.

#### Properties of expanded natural graphite

- Good thermal conductivity
- Low density
- Non-combustible
- Non-ageing
- Physically inert

![](_page_8_Picture_14.jpeg)

Natural graphite

![](_page_8_Picture_16.jpeg)

**Expanded natural graphite** 

### Structure of the element

Zehnder Carboline comprises of a copper pipe which is embedded in a graphite layer. This thermal high performance element is placed inside a sheet steel cassette. The materials and their arrangement guarantee ideal heat transmission and high performance values. The radiant panel has an angled profile on the side and top. This increases the strength to create a self-bearing panel. The angled profiles are also intended for the mounting of fitting clips on the top of the panel. In addition, it is possible to use insulation, which keeps the heat in and absorbs noise (particularly effective in combination with a perforated radiant panel).

![](_page_9_Picture_3.jpeg)

### Versions

Zehnder Carboline ceiling-mounted heating and cooling systems have been specially developed for cooling and heating buildings.

Zehnder Carboline covers the entire range of grid ceilings for offices and meeting rooms, as well as schools, hospitals and operating rooms.

The elements come in five nominal standard sizes.

![](_page_9_Picture_8.jpeg)

![](_page_9_Picture_9.jpeg)

![](_page_9_Picture_10.jpeg)

![](_page_9_Picture_11.jpeg)

![](_page_9_Picture_12.jpeg)

![](_page_9_Picture_13.jpeg)

24" x 48"

![](_page_9_Picture_15.jpeg)

# Comfort criteria

#### More well-being, lower costs:

- Natural principle of radiant heat
- Even heat distribution throughout the room
- Heating and cooling effect is immediately noticeable
- Silent operation
- No circulation of dust benefit for allergy sufferers

We spend almost three-quarters of our life indoors: at home, at work, during leisure time. The indoor climate (temperature and air quality) has a great influence on our general wellbeing and on our physical and mental performance.

Comfort is, above all, created by the type of heat transmission. For example, the radiant heat of a tiled stove is perceived as being pleasant and natural, because it warms the body directly. Modern ceiling mounted heating and cooling systems combine this principle with high energy efficiency. Radiant panels arranged evenly across the ceiling create a comfortable indoor climate and help to save energy. The heat is distributed over the entire area of the room. Unlike conventional air heating systems, radiant panels are also totally clean. This is because they emit or absorb heat without producing drafts and, therefore, do not circulate any dust. An enormous benefit for allergy sufferers and everyone who works or lives in dusty rooms.

# Optimal heat distribution and controllability

Zehnder Carboline sets new standards in terms of performance, temperature distribution and controllability.

The expanded natural graphite guarantees an extremely even distribution of temperature. Due to the high and even surface temperature, the radiant component of Zehnder Carboline is much higher than in comparable ceiling-mounted heating and cooling systems. This additional radiant heat provides extra comfort in the various rooms, while simultaneously reducing energy costs.

As well as the better heat distribution, the reaction time of Zehnder Carboline under alternating cooling or heating loads is unrivaled. The system reacts much quicker than conventional ceilingmounted heating and cooling systems. Critical to this is the combination of good conductivity and low mass found in expanded natural graphite. Due to the rapid response, energy efficiency is much higher than in conventional systems.

The reaction test also shows that Zehnder Carboline reacts faster than the competing product during a change of temperature from heating to cooling. Both systems were subjected to the same temperature and same mass flow for the test series. It can be seen that the Zehnder Carboline cools much quicker and also shows better performance after 25 minutes.

#### Thermographic comparison

The thermographic imaging shows the comparison between Zehnder Carboline and a competing product, both exposed to the same temperature and mass flow.

Θ = average surface temperature

See below for surface temperature across panel width.

![](_page_11_Figure_11.jpeg)

![](_page_11_Figure_12.jpeg)

![](_page_11_Figure_13.jpeg)

![](_page_11_Figure_14.jpeg)

![](_page_11_Figure_15.jpeg)

### Energy-saving considerations

The temperature a person senses in a room is the arithmetic mean average of the indoor air temperature and the surface temperatures (e.g. walls, ceilings, floors).

Due to the radiation and the higher surface temperature of ceiling-mounted cooling and heating systems, the indoor air temperature during heating can be kept lower. The indoor air temperature can also be higher during cooling, and still be perceived as comfortable.

Energy costs are reduced, both when heating and when cooling, due to the lower or higher air temperature.

The special properties of Zehnder Carboline reinforce this saving effect even more. Both through the even and high surface temperature of the cooling and heating elements and through the extremely quick reaction time. This allows indoor temperatures to be controlled as required within a very short time, without unnecessary losses of energy. In terms of energy consumption, the Zehnder Carboline has many advantages:

- Air temperature can be up to 5°F lower (when heating) or higher (when cooling)
- Very good controllability of the system
- High radiant component due to high surface temperature
- Short heating and cooling time of the system through low storage masses

![](_page_12_Picture_11.jpeg)

Due to the higher surface temperature, a much lower air temperature is sufficient for a ceiling-mounted radiant heating system in order to give people a sense of comfortable warmth.

![](_page_12_Picture_13.jpeg)

### Cost-benefit consideration

A pleasant indoor climate, excellent comfort control and high energy efficiency are all good reasons for choosing Zehnder Carboline. However, when selecting a system for heating and cooling rooms, there is another important factor: the total cost. The first cost of a radiant ceiling system can be up to 30% less expensive when compared to a standard central air handling with VAV box system. In addition to these savings, 10-20% energy cost reduction can be possible, depending upon the region of the U.S. and the cost per kilowatt hour. These costs are the driving factors for the developer in the planning or building phase. Of course, with constantly rising energy prices, it will become increasingly important to be aware of ongoing energy costs.

It is worthwhile investing in an appropriate ceiling-mounted cooling and heating system, especially if the property is to be rented out at a later time. After all, low ancillary costs inherently make every building more attractive.

### **Investment costs**

The level of investment for providing climate control within a building depends on several factors: For cooling, the type of distribution system, the cooling source, the comfort required and, finally, the architectural requirements. Zehnder Carboline is especially suited for large cooling loads and where a high value is placed on comfort and aesthetics. Since the panels can operate at relatively low heights, lower story heights can also be achieved without problem. As complex ventilation systems and ducts can also be dispensed with, there is no need for additional plant rooms and service shafts. This results in additional savings, which should be included in the calculation.

![](_page_13_Figure_6.jpeg)

### **Energy costs**

The energy costs of a building primarily depend on the type of energy system used, how the energy is produced and the heat that is given off or absorbed. All this, in turn, influences any additional costs, e.g. for maintenance and servicing or for the operation of fans. With Zehnder Carboline, these costs disappear completely. Further cost benefits are generated through lower temperatures being sufficient during heating and higher temperatures during cooling, in order to perceive the room temperature as comfortable. In the case of air systems, the initial costs for a low temperature level are very high, while a higher level can also be achieved through cheaper means, e.g. through free ventilation or using alternative sources of energy.

![](_page_13_Figure_9.jpeg)

![](_page_13_Figure_10.jpeg)

### Performance depends on indoor temperature

A room that gets too warm not only impacts on personal comfort, but also significantly reduces the speed at which people work and their mental capacity.

![](_page_14_Figure_3.jpeg)

# Combination with other systems

Mechanical ventilation may be needed in larger buildings to ensure the required minimum air exchange. Polluted air can be removed from the building via the outgoing air, while the incoming air can be prepared by an AC system, e.g. in terms of air humidity, in order to support an optimal indoor climate.

With Zehnder Carboline, this is easy and straightforward to do. The incoming air outlets can be integrated into the radiant panel– as tailor-made ventilation holes. **Important:** When combining mechanical ventilation with Zehnder Carboline, it should be ensured that the actual number of air exchanges is not exceeded. Removal of the cooling load or coverage of the heating requirement should continue to be done by the radiant panel. This is the only way to ensure the benefits of the system are optimally used and the disadvantages of air systems are eliminated.

![](_page_14_Picture_7.jpeg)

Zehnder Carboline with integrated air outlet

# Grid ceiling

Zehnder Carboline is specially tailored for use in new or existing grid ceilings. The length of the various panel elements is based on the grid size and can be up to five times the basic dimension. The use of longer panels reduces the cost of installation by up to 80% compared to standard systems available on the market, whose width is the same as their length. The special side construction makes it possible to insert the panels easily into the ceiling grid.

![](_page_14_Picture_11.jpeg)

# Suspension and installation

Zehnder Carboline is installed as standard into a ceiling grid. It is also possible to attach the panels directly to the ceiling.

![](_page_15_Picture_3.jpeg)

![](_page_15_Picture_4.jpeg)

### Installation styles

Zehnder offers two styles to choose from based upon the needs of the space.

#### Free hanging

Architecturally pleasing looks can be accomplished by installing ceiling panels in a free hanging arrangement. Additional convective capacity is also a result.

T-bar

Nominal 24" width and a variety of lengths fit standard T-bar tracks used in commercial applications today.

![](_page_15_Picture_11.jpeg)

# Suspension and installation

### **Panel connections**

#### **Fixing clips**

Designed to fix the panel to the ceiling. These simply clip into the lip on the side of the panel. The individual clips can be moved along the panel, providing flexibility to the conditions the building.

#### Gripple

Provides a faster, more flexible installation. Leveling the panel with the cable assembly is easy, which gives infinite range of adjustability.

![](_page_16_Picture_6.jpeg)

Fixing clips panel connection

![](_page_16_Picture_8.jpeg)

**Gripple panel connection** 

### **Installation sets**

A variety of standard installation sets are available for installing the cooling and heating elements to the ceiling. These installation sets allows the panels to be fixed directly to the concrete ceiling.

![](_page_16_Picture_12.jpeg)

![](_page_16_Picture_13.jpeg)

![](_page_16_Picture_14.jpeg)

**Ceiling installation with Gripple** 

### **Connection technology**

Special connection hoses are used to connect several individual elements to each other; they can be pushed directly onto the pipes with no need for an additional tool or soldering. This reduces installation time dramatically.

![](_page_16_Picture_18.jpeg)

# Suspension and installation

### **Connection options**

For Zehnder Carboline, both connection pipes are located on the same side. This enables easy installation and quick connection of the panels. Connections to panels require a 1/2" push-to-connect fitting. Do not braze/solder tubes or use ProPress fittings.

![](_page_17_Picture_4.jpeg)

![](_page_17_Picture_5.jpeg)

### Technical data

| Descr                          | ription                    | Unit | 24" x 24"                    | 24" x 24" 24" x 48" 24" x 72" 24" x 96" |        |        |         |  |  |  |  |  |  |  |  |
|--------------------------------|----------------------------|------|------------------------------|-----------------------------------------|--------|--------|---------|--|--|--|--|--|--|--|--|
| Dimensions                     |                            |      |                              |                                         |        |        |         |  |  |  |  |  |  |  |  |
| De al las atta                 | T-bar style                | Inch | 23-5/8                       | 47-5/8                                  | 71-5/8 | 95-5/8 | 119-5/8 |  |  |  |  |  |  |  |  |
| nearienguis                    | Free hanging style         | Inch | 24                           | 48                                      | 72     | 96     | 120     |  |  |  |  |  |  |  |  |
| Real width                     | T-bar style                | Inch | 23-5/8                       |                                         |        |        |         |  |  |  |  |  |  |  |  |
|                                | Free hanging style         | Inch | 24                           |                                         |        |        |         |  |  |  |  |  |  |  |  |
| Number of suspension points p  | per module (straight wire) | Pcs. | 4                            | 4                                       | 4      | 6      |         |  |  |  |  |  |  |  |  |
| Number of suspension points p  | per module (Y- wire)       | Pcs. | 4                            | 4                                       | 6      | 6      | 8       |  |  |  |  |  |  |  |  |
| Number of pipe rows            |                            | Pcs. | 6                            |                                         |        |        |         |  |  |  |  |  |  |  |  |
| Pipe separation                |                            | Inch | 3-15/16                      |                                         |        |        |         |  |  |  |  |  |  |  |  |
| Pipe material/connection       |                            | -    | Copper pipe, 1/2" (5/8" O.D. |                                         |        |        |         |  |  |  |  |  |  |  |  |
| Panel Material                 |                            | -    | Steel                        |                                         |        |        |         |  |  |  |  |  |  |  |  |
| Parameters                     |                            |      |                              |                                         |        |        |         |  |  |  |  |  |  |  |  |
| Maximum operating temperatu    | re                         | °F   | 185                          |                                         |        |        |         |  |  |  |  |  |  |  |  |
| Maximum operating pressure     |                            | PSI  | 145                          |                                         |        |        |         |  |  |  |  |  |  |  |  |
| Weights                        |                            |      |                              |                                         |        |        |         |  |  |  |  |  |  |  |  |
| Empty weight without water, wi | ith insulation             | lbs. | 10.5                         | 18.9                                    | 28.0   | 36.3   | 45.4    |  |  |  |  |  |  |  |  |
| Operating weight with water, w | ith insulation             | lbs. | 11.0                         | 11.0 19.9 29.4 38.3                     |        |        |         |  |  |  |  |  |  |  |  |
| Weight of insulation           |                            | lbs. | 0.5                          | 0.9                                     | 1.4    | 1.9    | 2.4     |  |  |  |  |  |  |  |  |
| Weight of water content        |                            | lbs. | 0.5                          | 1.0                                     | 1.5    | 2.0    | 2.5     |  |  |  |  |  |  |  |  |

### Dimensions and data

![](_page_19_Figure_2.jpeg)

|   | Description   | Style   |         |         |         |          |              |     |     |     |      |  |  |  |  |  |  |  |  |
|---|---------------|---------|---------|---------|---------|----------|--------------|-----|-----|-----|------|--|--|--|--|--|--|--|--|
|   | Description   |         |         | T-bar   |         |          | Free hanging |     |     |     |      |  |  |  |  |  |  |  |  |
| Α | Total width   |         |         | 23-5/8" |         |          |              |     | 24" |     |      |  |  |  |  |  |  |  |  |
| в | Total length  | 23-5/8" | 47-5/8" | 71-5/8" | 95-5/8" | 119-5/8" | 24"          | 48" | 72" | 96" | 120" |  |  |  |  |  |  |  |  |
| С | Total height  |         |         | 1-5/8"  |         |          | 1-5/8"       |     |     |     |      |  |  |  |  |  |  |  |  |
| D | Height of lip |         |         | 9/16"   |         |          | N/A          |     |     |     |      |  |  |  |  |  |  |  |  |
| Е | Width of lip  |         |         | 3/8"    |         |          | N/A          |     |     |     |      |  |  |  |  |  |  |  |  |

Note: 4 pipe units are 2-1/8" high

### Attachment sizes

![](_page_19_Picture_6.jpeg)

|    | Description of distance                | Size                         |
|----|----------------------------------------|------------------------------|
|    | Description of distance                | T-bar and free hanging style |
| а  | Suspension point to suspension point   | 21-3/4"                      |
| Re | al module lengths: 231/2" – 961/2"     |                              |
| b  | End of panel to 1st suspension point   | 1/4 of panel length          |
| с  | Suspension point to suspension point   | 1/2 of panel length          |
| d  | Bottom panel to top suspension point   | 2-1/4"                       |
| Re | al module length: 118 • 1191/2" • 120" |                              |
| b  | Suspension point to suspension point   | 1/6 of panel length          |
| с  | End of panel to 1st suspension point   | 1/3 of panel length          |
| d  | Suspension point to suspension         | 2-1/4"                       |

![](_page_19_Figure_8.jpeg)

# Zehnder Carboline

Ceiling-mounted cooling and heating panels for grid and suspended ceilings, for the cooling and heating of buildings. The cooling and heating element comprises a sheet steel cassette and a graphite element containing a copper pipe.

The copper pipes are fitted flush in a compressed graphite panel. This allows very quick and even thermal conductivity to be achieved across the entire area of the element. This highperformance element is firmly bonded to a galvanized sheet steel cassette. The deburred pipe ends are screwed to the cassette using location brackets in order to provide reinforcement and pressure relief. The visible side is coated with high-grade polyester fine-structure paint. The sheet steel cassette is available smooth or perforated (acoustically insulating). Fixing clips are applied at various points across the sheet steel cassette.

The maximum operating temperature is 185°F, the maximum operating pressure is 145 PSIG. The output of the cooling and heating element is tested to DIN EN 14037 and DIN EN 14240 respectively.

- With powder coating in RAL 9016 white
- With powder coating in RAL color as required
- Top-side insulation for thermal and acoustic insulation (optional)

![](_page_20_Picture_7.jpeg)

# Panel specifications

### 1. General

### 1.1 Related documents

 A. Drawings and general provisions of the contract, including general and supplementary conditions and division 1 specification sections, apply to this section.

### 1.2 Summary

- A. This section includes the following:
  - 1. Hydronic radiant heating and cooling ceiling panels.

### 1.3 Submittals

- A. Product data: includes rated capacities, specialties and accessories for each product indicated.
- B. Submit certification by independent agency of panel performance curves and capacity ratings.
- C. Shop drawings to be completed prior to release. Include plans, elevations, sections, details and attachments to other work. Indicate dimensions, weights, loads, required clearances, method of field assembly, components and location and size of each field connection.
  - Include schedule showing panel circuiting, model designation, size, room location and accessories furnished.
  - 2. IOM

### 1.4 System Description

- A. Contractor shall provide complete radiant ceiling system including ceiling suspension system, wall mounting trims and non-radiant panels if required.
- B. Contractor shall include mock up room for each panel designation and type for architect and engineers approval prior to release of product. Mock up shall include devices such as lights, fire suppression and AV.

### 1.5 Coordination

A. Coordinate layout and installation of radiant panels and suspension components with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, fire suppression system and partition assemblies.

### 2. Products

### 2.1 Manufacturers

- A. Manufacturers: subject to compliance with requirements, provide products by one of the following:
  - 1. Zehnde

#### 2.2 Testing Requirements

A. Heating performance capacity shall be tested in

accordance with DIN 14037 or ASHRAE 138-2013.

B. Cooling performance capacity shall be tested in accordance with DIN 14240 or ASHRAE 138-2013.

### 2.3 Hydronic Radiant heating and cooling ceiling panels

- A. Material:
  - a. Radiant ceiling panels to be contructed from
    0.04" aluminum material. Extruded aluminum with interlocking tongue and groove not acceptable.
  - b. Radiant panel edges shall be supplied as shown on drawings and available for lay in grid or free hanging applications.
  - c. Activation of ceiling panel to include graphite activation with 1/2" copper tubing embedded in the sandwich. Copper tubing shall be single continuous tube and factory pressure tested prior to shipment. Soldered on ubends are not acceptable.
  - d. Panels to have perforation pattern standard.
    Perforated panels to be supplied with an acoustical absorbing fleece for sound attenuation.
    The fleece shall be non-flammable and meet the requirements of building material standards DIN 4102/B1 and BS 476/ASTM E84.
  - e. Sound absorption data (NRC) shall be tested in accordance with ASTM C423 or DIN EN ISO 354.
  - f. Radiant ceiling panel surface to be coated with highly emissive powder coat paint for optimal radiative properties. Color to be selected by architect.
  - g. Radiant panels shall be 2-pipe.
  - Flexible hoses to be supplied for connections to surrounding panels and distribution system. Hoses shall be flexible PE corrugated with EVOH 0<sup>2</sup> barrier. Panel connection by means by brazing or pro-press is not acceptable.
  - i. Flexible hoses shall have max operating pressure of 435 psi and burst pressure of 1,600 psi.
  - j. Radiant panels shall ship with protective film.

### 3. Execution

### 3.1 Pre-design services

A. Bid shall include the costs to complete final selections and coordination with the Engineer at the Engineers office. Allow for a minimum of three (3) days.

#### 3.2 Installation - General

- A. Install radiant panel level and plumb. Maintain sufficient clearance for normal services, maintenance, or in accordance with construction drawings.
- B. To ensure proper installation and handling of the radiant panels, a complete IOM shall be supplied and reviewed before installation has begun.
- C. Complete installation and startup checks according to manufacturer's written instructions and perform the following:
  - 1. Verify that controls and control enclosure are accessible.
  - 2. Verify that control connections are complete to control valves as needed.
  - 3. Verify that any identification tags are visible.
  - 4. Verify that controls respond to inputs as specified.
  - 5. Removal of protective film coating before system startup.
  - 6. Release of stabilization profiles on panel edges.

#### 3.3 Connections

- A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicated general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to radiant panels to allow for service and maintenance.
- C. In addition to Division 23 Section "Hydronic Piping", connect copper tubing to supply with shut-off valve, strainer, control valve, and union or flange, and to return with balancing valve and union or flange.

#### 3.4 Field quality control

- A. Perform the following field tests and inspections and prepare test reports:
  - 1. Leak test: After installation, fill water tubes and test for leaks. Repair leaks and retest until no leaks exist.
  - Operational test: After electrical circuitry has been energized, start units to conform to proper unit operation.
  - 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- B. Remove and replace malfunctioning units and retest as specified above.

#### 3.5 Cleaning and protection

A. Remove protective film coating before startup of the system.

- B. Clean all visible surfaces of equipment; touch up as required.
- C. Protect all units before, during and after installation. Damaged materials due to improper protection shall be cause for rejection.

zehno<sup>d</sup> always the best climate

Always the best climate for

# **SMART IDEAS**

The brand with the best indoor climate solutions.

The broad and clearly structured portfolio from the Zehnder Group is split into four product lines. Consequently, we can provide the right product, the perfect system and the matching service for all types of projects - from new builds to renovations, single- or multiple- family homes, as well as commercial projects. This variety ensures that our wealth of experience is continuously expanding, providing tangible added value to our customers on a daily basis.

![](_page_24_Picture_3.jpeg)

#### **Decorative radiators**

Our individual decorative radiators for living and bathrooms not only make a home warmer but also more attractive. Created by renowned designers, they impress with excellent functionality.

### NUMBERS THAT SPEAK FOR THEMSELVES

![](_page_24_Figure_7.jpeg)

### WARRANTY

Zehnder guarantees its products to be free from defects in material and workmanship for a period of five years from date of shipment from our factory.

Should there be any defects in the good(s), the purchaser should promptly notify Zehnder. Upon receipt of written consent from Zehnder, the purchaser shall return the defective good(s) to the factory for inspection with freight prepaid. If inspection shows the goods to be defective, Zehnder will at its discretion repair or replace the said item(s).

Defects arising from damage due to shipment, improper installation, negligence or misuse by others are not covered by this warranty.

![](_page_25_Picture_0.jpeg)

Comfortable indoor ventilation Our comfortable indoor ventilation is energy-efficient and provides a healthy indoor climate. It promotes the wellbeing of the occupants and increases the value of the property.

![](_page_25_Picture_2.jpeg)

Heating and cooling ceiling systems Zehnder heating and cooling ceiling systems are convenient and energyefficient for heating and cooling. They are perfectly attuned to the relevant environment.

![](_page_25_Picture_4.jpeg)

Clean air solutions Clean air solutions from Zehnder reduce the level of dust in the air, create a healthier working climate and reduce the amount of cleaning required.

### **BEST CLIMATE IN THE WORLD**

![](_page_25_Figure_7.jpeg)

The Zehnder Group is represented in 19 countries and its products are available in over 70 countries

This warranty is extended only to the original purchaser from Zehnder.

IMPORTANT: Approved submittal documentation, specific to each project, supersedes the general guidelines contained within this document.

![](_page_25_Picture_11.jpeg)

The Zehnder brand offers excellent indoor climate solutions within the sectors of decorative radiators, clean air solutions, comfortable indoor ventilation and heating and cooling ceiling systems.

ITALY

![](_page_26_Picture_1.jpeg)